OpenVPN HOWTO

James Yonan (jim@yonan.net)

24th July 2003

Contents
1 Introduction 2
2 Other Documentation 2
3 Routed IP tunnel HOWTO 3
4 Home and Office IP Networking Parameters 3
5 Installing OpenVPN 3
5.1 Imstall from tarball . . . . ... ... ... ... ... . 4
5.2 Imstall from RPM . . . .. .. ... ... .. .. ... .. ..., 4
6 Configuring the TUN/TAP driver 5
6.1 One-time Configuration Steps . . . . . . . . ... ... .. .... 5
6.2 Once-per-reboot Configuration Steps . . . . . . .. .. ... ... 5
7 Configure Firewall and NAT 5
8 Build RSA Certificates and Keys 9

9 Important Note on the use of commercial certificate authorities
(CAs) with OpenVPN 11

10 Configuration file using SSL/TLS mode and RSA certificates /keys 11

11 Build A Pre-Shared Static Key 15



12 Configuration File using a Pre-Shared Static Key 16

13 Starting the VPN in SSL/TLS mode 20
14 Starting the VPN in Static Key mode 20
15 Test the VPN 20
16 Make the VPN DHCP-aware 21
17 Start the VPN automatically on reboot 22

18 Managing startup and shutdown of multiple OpenVPN tunnels 23

19 Instantiate an OpenVPN daemon using inetd or xinetd 28

1 Introduction

This document describes setting up OpenVPN in a typical Home to Office
telecommuting configuration.

There are two basic types of tunnels that one can create with OpenVPN:

e Routed IP tunnels best used to route point-to-point, IP traffic with-
out broadcasts. Slightly more efficient than bridged ethernet tunnels and
easier to configure. This HOWTO (below) covers routed IP tunnels.

e Bridged Ethernet Tunnels — can be used to tunnel both IP and non-IP
protocols. This type of tunnel is appropriate for applications which com-
municate via broadcasts, such as Windows networking and LAN games.
Slightly more complex to configure. A Mini-HOWTO for bridged ethernet
tunnels.

2 Other Documentation

Other documentation and HOWTOs (http://openvpn.sourceforge.net /links.html)
exist for setting up OpenVPN in different settings.



3 Routed IP tunnel HOWTO

Given the interrelated issues involved in configuring firewalls, VPNs, and NAT,
we will attempt to describe a complete system configuration rather than isolating
the VPN component of the setup.

In our example, both Home and Office private networks are linked to the internet
via two gateway machines which each have a public IP address. Each gateway
machine contains two NICs, one connected to the private network, the other
connected to the internet. The gateway machines provide NAT, firewall, and
VPN services for the machines on the private networks. The Home and Office
sides of the configuration are roughly symmetrical except the Office gateway
machine has a fixed IP address while the Home machine has a DHCP dynamic
address.

In the following examples, all configuration files shown are also available in the
OpenVPN distribution.

4 Home and Office IP Networking Parameters

| | Home | Office |
Local Ethernet Subnet (private address) | 10.0.1.0/24 10.0.0.0/24
Tunnel Endpoint (private address) 10.1.0.2 10.1.0.1
OpenVPN Gateway (public address) DHCP client, need to be explicit specified | 1.2.3.4

Table 1: home and office IP networking Parameters

5 Installing OpenVPN

If your system doesn’t have the OpenSSL Library, you should download and
install it (http://www.openssl.org).

If you want to take advantage of compression on the VPN link, or you want to in-
stall OpenVPN as an RPM package, install the LZO Library (http://www.oberhumer.com/opensource/1z0).

If you are using Linux 2.2 or earlier, download the TUN/TAP driver (http://vtun.sourceforge.net/tun).
Users of Linux 2.4.7 or greater should find the TUN/TAP driver already bun-

dled with their kernel. Users of Linux 2.4.0 -> 2.4.6 should note the caveat at

the end of the INSTALL file (http://openvpn.sourceforge.net/install.html).

Now download the latest release of OpenVPN:

http://prdownloads.sourceforge.net/openvpn/openvpn-1.4.2.tar.gz



5.1 Install from tarball

Unzip the distribution:

e gzip -dc openvpn-1.4.2.tar.gz | tar xvf -

Build OpenVPN:

e cd openvpn-1.4.2

./configure

e make

e make install
If you didn’t download the LZO Library, add —disable-1zo to the configure
command. Other options can be enabled such as pthread support (./con-

figure —enable-pthread) to improve latency during SSL/TLS dynamic key
exchanges. The command

e ./configure --help

will show all configuration options.

5.2 Install from RPM

First build the RPM file. This will require that the OpenSSL, pthread, and LZO
libraries (http://www.oberhumer.com/opensource/lzo) are present. Normally
only the LZO library requires an explicit download and install; the other libraries
are present by default on most Linux distributions.

e rpm -tb openvpn-1.4.2.tar.gz

The RPM build process will generate a lot of output. If the build succeeds, there
should be a note near the end of the output stating the name of the binary RPM
file which was written. Install the binary RPM with the command:

e rpm -Uvh binary-RPM-file



6 Configuring the TUN/TAP driver

6.1 One-time Configuration Steps
If you are using Linux 2.4.7 or higher, chances are good that the TUN/TAP

driver is already bundled with your kernel. You can confirm this with the
command

e locate if_tun.h

which should show a file such as /usr/include/linux/if tun.h.

For Linux 2.4.7 or higher, if you installed from the tarball, enter the following
command to configure the TUN/TAP device node (you can omit this step if
you installed from RPM, as the RPM install will do it automatically for you):

e mknod /dev/net/tun c 10 200

If you are using Linux 2.2, you should obtain Version 1.1 (http://vtun.sourceforge.net/tun)
of the TUN/TAP kernel module and follow the installation instructions.

6.2 Once-per-reboot Configuration Steps

On Linux, prior to using OpenVPN or any other program which uses TUN/TAP
devices, you should load the TUN/TAP kernel module:

e modprobe tun
and enable IP forwarding;:

e echo 1 > /proc/sys/net/ipv4/ip_forward

7 Configure Firewall and NAT

This section assumes you are using Linux 2.4 with an iptables firewall. Here
is a sample firewall configuration that provides NAT for machines on a pri-
vate network to access the internet, stateful outgoing connection tracking, and
OpenVPN support:



sample-config-files/firewall.sh

#!/bin/bash
# A Sample OpenVPN-aware firewall.

# ethO is connected to the internet.
# ethl is connected to a private subnet.

# Change this subnet to correspond to your private
# ethernet subnet. Home will use 10.0.1.0/24 and
# 0ffice will use 10.0.0.0/24.

PRIVATE=10.0.0.0/24

# Loopback address
LO0OP=127.0.0.1

# Delete old iptables rules

# and temporarily block all traffic.
iptables -P OUTPUT DROP

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -F

# Set default policies
iptables -P OUTPUT ACCEPT
iptables -P INPUT DROP
iptables -P FORWARD DROP

# Prevent external packets from using loopback addr
iptables -A INPUT -i ethO -s $LOOP -j DROP

iptables -A FORWARD -i ethO -s $LOOP -j DROP
iptables -A INPUT -i ethO -d $LOOP -j DROP

iptables -A FORWARD -i ethO -d $LOOP -j DROP

# Anything coming from the Internet should have a real Internet address
iptables -A FORWARD -i ethO -s 192.168.0.0/16 -j DROP

iptables -A FORWARD -i ethO -s 172.16.0.0/12 -j DROP

iptables -A FORWARD -i ethO -s 10.0.0.0/8 -j DROP

iptables -A INPUT -i ethO -s 192.168.0.0/16 -j DROP

iptables -A INPUT -i ethO -s 172.16.0.0/12 -j DROP

iptables -A INPUT -i ethO -s 10.0.0.0/8 -j DROP

# Block outgoing NetBios (if you have windows machines running
# on the private subnet). This will not affect any NetBios
# traffic that flows over the VPN tunnel, but it will stop



# local windows machines from broadcasting themselves to

# the internet.

iptables -A FORWARD -p tcp --sport 137:139 -o ethO -j DROP
iptables -A FORWARD -p udp --sport 137:139 -o ethO -j DROP
iptables -A OUTPUT -p tcp --sport 137:139 -o ethO -j DROP
iptables -A OUTPUT -p udp --sport 137:139 -o ethO -j DROP

# Check source address validity on packets going out to internet
iptables -A FORWARD -s ! $PRIVATE -i ethl -j DROP

# Allow local loopback
iptables -A INPUT -s $LOOP -j ACCEPT
iptables -A INPUT -d $LOOP -j ACCEPT

# Allow incoming pings (can be disabled)
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

# Allow services such as www and ssh (can be disabled)
iptables -A INPUT -p tcp --dport http -j ACCEPT
iptables -A INPUT -p tcp --dport ssh -j ACCEPT

Allow incoming OpenVPN packets
Duplicate the line below for each
OpenVPN tunnel, changing --dport n
to match the OpenVPN UDP port.

In OpenVPN, the port number is
controlled by the --port n option.

If you put this option in the config
file, you can remove the leading ’--’

If you taking the stateful firewall
approach (see the OpenVPN HOWTOQ),
then comment out the line below.

H o O O OHF H HEH R

iptables -A INPUT -p udp --dport 5000 -j ACCEPT

Allow packets from TUN/TAP devices.
When OpenVPN is run in a secure mode,
it will authenticate packets prior
to their arriving on a tun or tap
interface. Therefore, it is not
necessary to add any filters here,
unless you want to restrict the

type of packets which can flow over
the tunnel.

H o O O OH H O H



iptables -A INPUT -i tun+ -j ACCEPT
iptables -A FORWARD -i tun+ -j ACCEPT
iptables -A INPUT -i tap+ -j ACCEPT
iptables -A FORWARD -i tap+ -j ACCEPT

# Allow packets from private subnets
iptables -A INPUT -i ethl -j ACCEPT
iptables -A FORWARD -i ethl -j ACCEPT

# Keep state of connections from local machine and private subnets
iptables -A OUTPUT -m state --state NEW -o ethO -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -m state --state NEW -o ethO -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

# Masquerade local subnet
iptables -t nat -A POSTROUTING -s $PRIVATE -o ethO -j MASQUERADE

OpenVPN offers a few additional options on firewall setup:

e If both OpenVPN peers reference the other with an explicit —remote op-
tion, and stateful firewalls that provide UDP connection tracking (such as
iptables) exist between the peers, it is possible to run OpenVPN without
any explicit firewall rules, if both peers originate regular pings to each
other to keep the connection alive. To do this, simply run OpenVPN with
the —remote peer option, and specify —ping 15 to ensure that packets
flow over the tunnel at least once every 15 seconds.

e The above option is less convenient if one of the peers changes its IP
address frequently such as a DHCP or a dial-in peer. For these cases, the
sample firewall configuration above will allow incoming packets on UDP
port 5000 (OpenVPN’s default UDP port) from any IP address. This
should be considered safe in any of OpenVPN’s secure modes, since all
incoming tunnel packets must pass an authentication test or they will be
dropped.

e *1If you choose to fully open OpenVPN’s incoming UDP port as in the sam-
ple firewall configuration above, you might want to take advantage of the
—tls-auth option to do double authentication on the TLS control channel,
using both the RSA key and a pre-shared secret passphrase as a second line
of defense against DoS or active attacks. For more information on —tls-
auth, see the openvpn man page (http://openvpn.sourceforge.net /man.html).



8 Build RSA Certificates and Keys

OpenVPN has two secure modes, one based on SSL/TLS security using RSA
certificates and keys, the other using a pre-shared static key. While SSL/TLS +

RSA keys is arguably the most secure option, static keys have the benefit of sim-

plicity. If you want to use RSA keys, read on. For static keys, jump forward to

the Build Pre-Shared Static Key section (http://openvpn.sourceforge.net /howto.html#pre-
shared).

We will build RSA certificates and keys using the openssl command, included
in the OpenSSL library distribution.

RSA certificates are public keys that also have other secure fields embedded
in them such as the Common Name or email address of the certificate
holder. OpenVPN provides the ability to write scripts to test these fields prior
to authentication. For more information, see the —tls-verify option in the
openvpn man page (http://openvpn.sourceforge.net/man.html).

In our example we will follow the apache convention of using the .crt file
extension to denote certificate files and the .key file extension to denote private
key files. Private key files must always be kept secure. Certificate files can be
freely published or shared.

Select one machine such as Office to be the key management machine.

First edit the /usr/share/ssl/openssl.cnf file (this file may exist in a different
place, so use locate openssl.cnf to find it).

You may want to make some changes to this file:

e Make a directory to serve as your key working area and change dir to
point to it.

e Consider increasing default days so your VPN doesn’t mysteriously
stop working after exactly one year.

e Set certificate and private key to point to your master certificate au-
thority certificate and private key files which we will presently generate.
In the examples below, we will assume that your certificate authority cer-
tificate is named my-ca.crt and your certificate authority private key is
named my-ca.key.

e Note the files index.txt and serial. Initialize index.txt to be empty and
serial to contain an initial serial number such as 01.

e If you are paranoid about key sizes, increase default bits to 2048. Open-
VPN will have no problem handling a 2048 bit RSA key if you have built
OpenVPN with pthread support, to enable background processing of
RSA keys. You can still use large keys even without pthread support,
but you will see some latency degradation on the tunnel during SSL/TLS



key negotiations. For a good article on choosing an RSA key size, see the
April 2002 issue (http://www.counterpane.com/crypto-gram-0204.html)
of Bruce Schneier’s Crypto-Gram Newsletter.

After openssl.cnf has been edited, create your master certificate authority
certificate /private-key pair:

e openssl req -nodes -new -x509 -keyout my-ca.key -out my-ca.crt
-days 3650

This will create a master certificate authority certificate/private-key pair valid
for 10 years.

Now create certificate/private-key pairs for both Home and Office:

e openssl req -nodes -new -keyout office.key -out office.csr
e openssl ca -out office.crt -in office.csr
e openssl req -nodes -new -keyout home.key -out home.csr

e openssl ca -out home.crt -in home.csr

Now copy home.crt, home.key, and my-ca.crt to Home over a secure chan-
nel, though actually only .key files should be considered non-public.

Now create Diffie Hellman parameters on Office with the following command:
e openssl dhparam -out dh1024.pem 1024

Increase the bit size from 1024 to 2048 if you also increased it in openssl.cnf.

For the paranoid, consider omitting the -nodes option on the openssl com-
mands above. This will cause each private key to be encrypted with a pass-
word, making the keys secure even if someone broke onto your server and stole
your private key files. The downside of this approach is that every time you run
OpenVPN, you will need to type in the password. For more information see the —
askpass option in the openvpn man page (http://openvpn.sourceforge.net/man.html).

If you find manual RSA key management confusing, note that OpenVPN will

interoperate with any X509 certificate management tool or service including the

commercial CAs such as Thawte (http://www.thawte.com) or Verisign (http://www.verisign.com).
Check out the OpenCA project for an example of what’s being done with cer-

tificate/key management in the Open Source realm.

In addition, the OpenVPN distribution contains a small set of scripts which can
be used to simplify RSA certificate and key management (http://openvpn.sourceforge.net/easyrsa.html).

10



9 Important Note on the use of commercial cer-
tificate authorities (CAs) with OpenVPN

It should be noted that OpenVPN’s security model in SSL/TLS mode is oriented
toward users who will generate their own root certificate, and hence be their
own CA. In SSL/TLS mode, OpenVPN authenticates its peer by checking that
the peer-supplied certificate was signed by the CA certificate specified in the —ca
option. Like the SSL-based secure web, the security of OpenVPN’s SSL/TLS
mode rests on the infeasibility of forging a root certificate signature.

This authentication procedure works perfectly well if you have generated your
own root certificate, but presents a problem if you wish to use the root certificate
of a commercial CA such as Thawte. If, for example, you specified Thawte’s
root certificate in the —ca option, any certificate signed by Thawte would now
be able to authenticate with your OpenVPN peer - certainly not what you would
want.

Luckily there is a solution to this problem in the —tls-verify option. This option
will allow you to execute a command to check the contents of a certificate, to
fine-tune the selection of which certificate is allowed, and which is not. See the
script, verify-cn in the sample-scripts subdirectory for an example of how to do
this, and also see the man page for the —tls-verify option.

10 Configuration file using SSL/TLS mode and
RSA certificates/keys

In our example, we will use OpenVPN configuration files. OpenVPN allows
options to be passed on either the command line or in one or more configuration
files. Options in configuration files can omit the leading "-" that is required for
command line options.

Set up the following configuration files:

sample-config-files/tls-office.conf

Sample OpenVPN configuration file for
office using SSL/TLS mode and RSA certificates/keys.

H OB O O

#’ or ’;’ may be used to delimit comments.

+H+

Use a dynamic tun device.

+H+

For Linux 2.2 or non-Linux 0Ses,
# you may want to use an explicit

11



# unit number such as "tunl".

# OpenVPN also supports virtual
# ethernet "tap" devices.

dev tun

# 10.1.0.1 is our local VPN endpoint (office).
# 10.1.0.2 is our remote VPN endpoint (home).
ifconfig 10.1.0.1 10.1.0.2

# Our up script will establish routes
# once the VPN is alive.
up ./office.up

# In SSL/TLS key exchange, Office will
# assume server role and Home

# will assume client role.

tls-server

# Diffie-Hellman Parameters (tls-server only)
dh dh1024.pem

# Certificate Authority file
ca my-ca.crt

# Our certificate/public key
cert office.crt

# Our private key
key office.key

OpenVPN uses UDP port 5000 by default.
Each OpenVPN tunnel must use

a different port number.

lport or rport can be used

to denote different ports

for local and remote.

port 5000

H B O OH H

we

Downgrade UID and GID to
"nobody" after initialization
for extra security.

; user nobody

; group nobody

H & R

# If you built OpenVPN with
# LZ0 compression, uncomment

12



# out the following line.

; comp-1lzo

# Send a UDP ping to remote once

# every 15 seconds to keep

# stateful firewall connection

# alive. Uncomment this

# out if you are using a stateful

# firewall.

; ping 15

# Uncomment this section for a more reliable detection when a system
# loses its connection. For example, dial-ups or laptops that
# travel to other locatioms.

; ping 15

; ping-restart 45
; ping-timer-rem
; persist-tun

; persist-key

# Verbosity level.

# 0 -- quiet except for fatal errors.

# 1 -- mostly quiet, but display non-fatal network errors.
# 3 -- medium output, good for normal operation.

# 9 -- verbose, good for troubleshooting

verb 3

sample-config-files/office.up

#!/bin/bash
route add -net 10.0.1.0 netmask 255.255.255.0 gw $5

sample-config-files/tls-home.conf

Sample OpenVPN configuration file for
home using SSL/TLS mode and RSA certificates/keys.

H o HF B R

#° or ’;’ may be used to delimit comments.

Use a dynamic tun device.
For Linux 2.2 or non-Linux 0Ses,
you may want to use an explicit

H o =

unit number such as "tunil".

13



# OpenVPN also supports virtual
# ethernet "tap" devices.
dev tun

# Our OpenVPN peer is the office gateway.
remote 1.2.3.4

# 10.1.0.2 is our local VPN endpoint (home).
# 10.1.0.1 is our remote VPN endpoint (office).
ifconfig 10.1.0.2 10.1.0.1

# Our up script will establish routes
# once the VPN is alive.
up ./home.up

# In SSL/TLS key exchange, Office will
# assume server role and Home

# will assume client role.

tls-client

# Certificate Authority file
ca my-ca.crt

# Our certificate/public key
cert home.crt

# Our private key
key home.key

OpenVPN uses UDP port 5000 by default.
Each OpenVPN tunnel must use

a different port number.

lport or rport can be used

to denote different ports

for local and remote.

port 5000

H O B O O ®

we

Downgrade UID and GID to
"nobody" after initialization
for extra security.

; user nobody

; group nobody

H+ = &

# If you built OpenVPN with
# LZ0 compression, uncomment
# out the following line.

14



e FHOH H B OB B

H# = &

comp-1zo

Send a UDP ping to remote once

every 15 seconds to keep

stateful firewall connection

alive. Uncomment this

out if you are using a stateful

firewall.

ping 15

Uncomment this section for a more reliable detection when a system
loses its connection. For example, dial-ups or laptops that
travel to other locations.

ping 15
ping-restart 45
ping-timer-rem
persist-tun
persist-key

# Verbosity level.

# 0 -- quiet except for fatal errors.

# 1 -- mostly quiet, but display non-fatal network errors.
# 3 -- medium output, good for normal operation.

# 9 -- verbose, good for troubleshooting

verb 3

sample-config-files/home.up

#!

/bin/bash

route add -net 10.0.0.0 netmask 255.255.255.0 gw $5

11 Build A Pre-Shared Static Key

In contrast with RSA key management, using a pre-shared static key has the
benefit of simplicity. The major downside of using static keys is that you give
up the notion of perfect forward security, meaning that if an attacker steals your
static key, everything that was ever encrypted with it is compromised.

Generate a static key with the following command:

e openvpn --genkey --secret static.key

The static key file is formatted in ascii and looks like this:

15



————— BEGIN OpenVPN Static key V1-----

ebed4d6af39289d53
171ecc237a8f996a
97743d146661405e
c724d5913c550a0c
30a48eb52dfbecebb
e2e7bd4a8357df78
4609fe35bbe99c32
bdf974952ade8fb9
71c204aaf4f256ba
eeda7aed4822ff98
fd66da2efad9bf8ch
e70996353e0f96a9
c94c9f9afb17637b
283da25cc99b37bf
6f7e15b38aedc3e8
e6adb40fcabcb463

An OpenVPN static key file contains enough entropy to key both a 512 bit
cipher key and a 512 bit HMAC key for authentication.

Copy static.key to the other peer via a secure medium such as scp or copy-

paste in ssh.

12 Configuration File using a Pre-Shared Static

Key

In our example, we will use OpenVPN configuration files. OpenVPN allows
options to be passed on either the command line or in one or more configuration
files. Options in configuration files can omit the leading "-" that is required for

command line options.

Set up the following configuration files:

sample-config-files/static-office.conf

H# o = B

++

Use a dynamic tun device.

Sample OpenVPN configuration file for
office using a pre-shared static key.

#° or ’;’ may be used to delimit comments.

16



# For Linux 2.2 or non-Linux 0Ses,
# you may want to use an explicit
# unit number such as "tunl".

# OpenVPN also supports virtual

# ethernet "tap" devices.

dev tun

# 10.1.0.1 is our local VPN endpoint (office).
# 10.1.0.2 is our remote VPN endpoint (home) .
ifconfig 10.1.0.1 10.1.0.2

# Our up script will establish routes
# once the VPN is alive.
up ./office.up

# Our pre-shared static key
secret static.key

OpenVPN uses UDP port 5000 by default.
Each OpenVPN tunnel must use

a different port number.

lport or rport can be used

to denote different ports

for local and remote.

port 5000

H O O ®

we

Downgrade UID and GID to
"nobody" after initialization

H# = &

for extra security.
; user nobody
; group nobody

If you built OpenVPN with
LZ0 compression, uncomment
out the following line.
comp-1zo

H+ = &

we

Send a UDP ping to remote once
every 15 seconds to keep
stateful firewall connection
alive. Uncomment this

out if you are using a stateful
firewall.

; ping 15

H o B H O

# Uncomment this section for a more reliable detection when a system

17



# loses its connection. For example, dial-ups or laptops that
# travel to other locations.

; ping 15

; ping-restart 45

; ping-timer-rem

; persist-tun

; persist-key

# Verbosity level.

# 0 -- quiet except for fatal errors.

# 1 -- mostly quiet, but display non-fatal network errors.
# 3 -- medium output, good for normal operation.

# 9 -- verbose, good for troubleshooting

verb 3

sample-config-files/office.up

#!/bin/bash
route add -net 10.0.1.0 netmask 255.255.255.0 gw $5

sample-config-files/static-home.conf

Sample OpenVPN configuration file for
home using a pre-shared static key.

H = B R

#° or ’;’ may be used to delimit comments.

Use a dynamic tun device.

For Linux 2.2 or non-Linux 0Ses,
you may want to use an explicit
unit number such as "tunl".
OpenVPN also supports virtual

H o B O OB ®

ethernet "tap'" devices.
dev tun

# Our OpenVPN peer is the office gateway.
remote 1.2.3.4

# 10.1.0.2 is our local VPN endpoint (home).
# 10.1.0.1 is our remote VPN endpoint (office).
ifconfig 10.1.0.2 10.1.0.1

# Our up script will establish routes

18



# once the VPN is alive.
up ./home.up

# Our pre-shared static key
secret static.key

OpenVPN uses UDP port 5000 by default.
Each OpenVPN tunnel must use

a different port number.

lport or rport can be used

to denote different ports

H o = B O O

for local and remote.
port 5000

we

Downgrade UID and GID to
"nobody" after initialization

H = H=

for extra security.
; user nobody
; group nobody

If you built OpenVPN with
LZ0 compression, uncomment
out the following line.
comp-1zo

H# = =

we

Send a UDP ping to remote once
every 15 seconds to keep
stateful firewall connection
alive. Uncomment this

out if you are using a stateful
firewall.

ping 15

H oH O H O ®

we

Uncomment this section for a more reliable detection when a system
loses its connection. For example, dial-ups or laptops that
travel to other locatioms.

; ping 15

; ping-restart 45

H = R

; ping-timer-rem
; persist-tun
; persist-key

# Verbosity level.

# 0 -- quiet except for fatal errors.

# 1 -- mostly quiet, but display non-fatal network errors.
# 3 -- medium output, good for normal operation.

19



# 9 -- verbose, good for troubleshooting
verb 3

sample-config-files/home.up

#!/bin/bash
route add -net 10.0.0.0 netmask 255.255.255.0 gw $5

13 Starting the VPN in SSL/TLS mode
On Home, start the VPN with the command:

e openvpn --config tls-home.conf
On Office, start the VPN with the command:

e openvpn --config tls-office.conf

14 Starting the VPN in Static Key mode
On Home, start the VPN with the command:

e openvpn --config static-home.conf
On Office, start the VPN with the command:

e openvpn --config static-office.conf

15 Test the VPN

On Home, test the VPN by pinging Office through the tunnel:
e ping 10.1.0.1

On Office, test the VPN by pinging Home through the tunnel:

e ping 10.1.0.2

20



If these tests silently fail, you may want to re-edit the configuration files and
set the verbosity level to 8 which will produce much more detailed debugging
output. Also consult the FAQ (http://openvpn.sourceforge.net/faq.html#cant-
ping) for more information on troubleshooting.

If these tests succeed, now try pinging through the tunnel using machines on
the private networks other than the OpenVPN gateway machines, to test the
routing. Basically any machine on the 10.0.1.0/24 subnet should be able to
access any machine on the 10.0.0.0/24 subnet and vice versa.

If that works, congratulations! If not, you might want to check out the Open-
VPN Mailing List archives (http://sourceforge.net/mail?group id—48978) to
see if anyone else has had a similar problem. If you don’t find a resolution to
your problem there, consider posting to the openvpn-users list.

16 Make the VPN DHCP-aware

If you recall, in our example network configuration, Home has a dynamic IP
address which could change without warning. If you are using dhcped as
your client daemon, it is easy to construct a script which will be run any-
time the client’s IP address changes. This script will be named something like
/etc/dhepce/dheped-eth0.exe.

Basically, you should add a line to this script which will send a SIGUSRI1 or
SIGHUP signal to the OpenVPN daemon such as:

e killall -HUP openvpn

When OpenVPN receives this signal it will close and reopen the network con-
nection to its peer, using the new IP address assigned by DHCP.

You should also use the —float option if you are connecting to a peer which may
change its IP address due to a DHCP reset.

It is also possible to handle DHCP resets with the SIGUSR1 signal which is
like SIGHUP except it offers more fine-grained control over which OpenVPN
subsystems are reset. A SIGUSRI1 signal can also be generated internally based
on —ping and —ping-restart. The —persist-tun option allows a reset with-
out closing and reopening the tun device (which allows seamless connectivity
through the tunnel across DHCP resets). The —persist-remote-ip option al-
lows for preservation of remote IP address across DHCP resets. This allows
both OpenVPN peers to be DHCP clients. The —persist-key option doesn’t
re-read key files on restart (which allows an OpenVPN daemon to be restarted
even if its privileges were downgraded with —user or —group).

For more information on using OpenVPN in a dynamic IP address context, see
the FAQ (http://openvpn.sourceforge.net /faq.html#dynamic).

21



17 Start the VPN automatically on reboot

First make a directory to store OpenVPN keys and configuration files such as
/etc/openvpn.

Decide whether you want to use TLS or Static Key mode and copy appropriate
.conf, .up, .key, .pem, and .crt files to /etc/openvpn.

Protect your .key files:
e chmod go-rwx /etc/openvpn/*.key

If you are using Linux iptables, edit the firewall configuration file firewall.sh,
making changes appropriate to your site and copy to /etc/openvpn.

Make a startup script that looks something like this:

sample-config-files/openvpn-startup.sh

#!/bin/bash

# A sample OpenVPN startup script
# for Linux.

# openvpn config file directory
dir=/etc/openvpn

# load the firewall
$dir/firewall.sh

# load TUN/TAP kernel module
modprobe tun

# enable IP forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward

Invoke openvpn for each VPN tunnel
in daemon mode. Alternatively,

"--daemon" from

you could remove
the command line and add "daemon"

to the config file.

Each tunnel should run on a separate
UDP port. Use the "port" option

to control this. Like all of
OpenVPN’s options, you can

H o B o R H

22



# specify "--port 8000" on the command
# line or "port 8000" in the config
# file.

openvpn --cd $dir --daemon --config vpnl.conf
openvpn --cd $dir --daemon --config vpn2.conf
openvpn --cd $dir --daemon --config vpn2.confl

And make a shutdown script like this:

sample-config-files/openvpn-shutdown.sh

#!/bin/bash
# stop all openvpn processes

killall -TERM openvpn

Finally, add calls to openvpn-startup.sh and openvpn-shutdown.sh to your
system startup and shutdown scripts or to your /etc/init.d directory.

18 Managing startup and shutdown of multiple
OpenVPN tunnels

Here is a sample /etc/init.d script which will automatically create an Open-
VPN tunnel for each .conf file in /etc/openvpn.

This script is installed by default if you install OpenVPN from an RPM package.

sample-scripts/openvpn.init

/bin/sh

openvpn This shell script takes care of starting and stopping
openvpn.

description: OpenVPN is a robust and highly flexible tunneling application that
uses all of the encryption, authentication, and certification features
of the OpenSSL library to securely tunnel IP networks over a single

#!
#
#
#
#
# chkconfig: 345 80 30
#
#
#
#
# UDP port.

23



H+

H = = B R

H+ &

H oHF HF o HF H H O HEHH R

H o O R H

Contributed to the OpenVPN project by
Douglas Keller <doug@voidstar.dyndns.org>

2002.05.15
To install:

copy this file to /etc/rc.d/init.d/openvpn

shell> chkconfig --add openvpn

shell> mkdir /etc/openvpn

make .conf or .sh files in /etc/openvpn (see below)
To uninstall:

run: chkconfig --del openvpn
Author’s Notes:

I have created an /etc/init.d init script and enhanced openvpn.spec to
automatically register the init script. Once the RPM is installed you
can start and stop OpenVPN with '"service openvpn start" and "service
openvpn stop".

The init script does the following:

- Starts an openvpn process for each .conf file it finds in
/etc/openvpn.

- If /etc/openvpn/xxx.sh exists for a xxx.conf file then it executes
it before starting openvpn (useful for doing openvpn --mktun...).

- In addition to start/stop you can do:

service openvpn reload - SIGHUP
service openvpn reopen - SIGUSR1
service openvpn status - SIGUSR2

Modifications 2003.05.02

* Changed == to = for sh compliance (Bishop Clark).

* If condrestart|reload|reopen|status, check that we were
actually started (James Yonan) .

* Added lock, piddir, and work variables (James Yonan) .

* If start is attempted twice, without an intervening stop, or
if start is attempted when previous start was not properly
shut down, then kill any previously started processes, before
commencing new start operation (James Yonan).

* Do a better job of flagging errors on start, and properly

24



# returning success or failure status to caller (James Yonan).

# Location of openvpn binary
openvpn="/usr/sbin/openvpn"

# Lockfile
lock="/var/lock/subsys/openvpn"

# PID directory
piddir="/var/run/openvpn"

# Our working directory
work=/etc/openvpn

# Source function library.
/etc/rc.d/init.d/functions

# Source networking configuration.
/etc/sysconfig/network

# Check that networking is up.
[ ${NETWORKING} = "no" ] && exit 0

[ -f $openvpn ] || exit O
# See how we were called.
case "$1" in

start)
echo -n $"Starting openvpn: "
/sbin/modprobe tun >/dev/null 2>&1
echo 1 > /proc/sys/net/ipv4/ip_forward

if [ ! -4 $piddir ]; then
mkdir $piddir
fi

if [ -f $lock ]; then
# we were not shut down correctly
for pidf in ¢‘/bin/ls $piddir/*.pid 2>/dev/null‘; do
if [ -s $pidf 1; then
kill ‘cat $pidf¢ >/dev/null 2>&1

fi

rm -f $pidf
done
rm -f $lock

25



sleep 2
fi

rm -f $piddir/*.pid
cd $work

# Start every .conf in $work and run .sh if exists
errors=0
successes=0
for ¢ in ‘/bin/ls *.conf 2>/dev/null®; do
bn=${c%%.conf}
if [ -f "$bn.sh" ]; then
$bn.sh
fi
rm -f $piddir/$bn.pid
$openvpn --daemon --writepid $piddir/$bn.pid --config $c --cd $work
if [ $7 = 0 ]; then
successes=1
else
errors=1
fi
done

if [ $errors = 1 ]; then
failure; echo

else
success; echo

fi

if [ $successes = 1 ]; then
touch $lock
fi
stop)
echo -n $"Shutting down openvpn:
for pidf in ‘/bin/ls $piddir/*.pid 2>/dev/null‘; do
if [ -s $pidf 1; then
kill ‘cat $pidf¢ >/dev/null 2>&1
fi
rm -f $pidf
done
success; echo
rm -f $lock

restart)
$0 stop

26



sleep 2
$0 start
Y
reload)
if [ -f $lock ]; then
for pidf in ‘/bin/ls $piddir/*.pid 2>/dev/null‘; do
if [ -s $pidf ]; then
kill -HUP ‘cat $pidf‘ >/dev/null 2>&1
fi
done
else
echo "openvpn: service not started"
exit 1
fi
Y
reopen)
if [ -f $lock ]; then
for pidf in ‘/bin/ls $piddir/*.pid 2>/dev/null‘; do
if [ -s $pidf 1; then
kill -USR1 ‘cat $pidf¢ >/dev/null 2>&1

fi
done
else
echo "openvpn: service not started"
exit 1
fi
condrestart)
if [ -f $lock ]; then
$0 stop
# avoid race
sleep 2
$0 start
fi
55
status)

if [ -f $lock ]; then
for pidf in ‘/bin/ls $piddir/*.pid 2>/dev/null‘; do
if [ -s $pidf ]; then
kill -USR2 ‘cat $pidf¢ >/dev/null 2>&1
fi
done
echo "Status written to /var/log/messages"
else
echo "openvpn: service not started"
exit 1

27



fi
55
*)
echo "Usage: openvpn {start|stopl|restart|condrestart|reload|reopen|status}"
exit 1
esac

exit O

19 Instantiate an OpenVPN daemon using inetd
or xinetd

The common xinetd service can be used to automatically instantiate an Open-
VPN daemon upon receipt of an initial datagram from a remote peer.

This xinetd configuration will cause xinetd to listen on UDP port 5000 for
the first datagram of an incoming OpenVPN session (using a pre-shared key),
at which time xinetd will automatically instantiate an OpenVPN daemon to
handle the session. Note the use of the —inactive switch which will cause the
OpenVPN daemon to time out and exit after 10 minutes of idle time. After
the OpenVPN daemon exits for whatever reason, the xinetd service will resume
listening on the port, and will again instantiate an OpenVPN daemon to handle
additional incoming connections. Also note that xinetd will initially instantiate
the OpenVPN daemon with root privileges, but OpenVPN will subsequently
(after reading the protected key file) downgrade its privilege to nobody.

The key file can be generated with the following command:
e openvpn --genkey --secret key

Note that each OpenVPN tunnel needs to run on its own separate port number,
and needs its own xinetd configuration file. This is because OpenVPN needs
specific information on each potential incoming connection, including key files,
tun/tap devices, tunnel endpoints, and routing configuration. At this point in
OpenVPN’s development, it is not capable of handling any sort of incoming
connection template that would allow a single configuration file to describe a
large class of potential connecting clients. Since OpenVPN is implemented as a
UDP server, it cannot take advantage of the infrastructure available to forking
TCP servers which listen on a fixed port number, then dynamically fork off a
new handling daemon for each client session. Nonetheless, incoming connection
templates are on the wish list and may be implemented if there is sufficient
interest and support from the developer and user community.

28



sample-config-files/xinetd-server-config

An xinetd configuration file for OpenVPN.

This file should be renamed to openvpn or something suitably
descriptive and copied to the /etc/xinetd.d directory.
xinetd can then be made aware of this file by restarting

it or sending it a SIGHUP signal.

For each potential incoming client, create a separate version
of this configuration file on a unique port number. Also note
that the key file and ifconfig endpoints should be unique for
each client. This configuration assumes that the OpenVPN
executable and key live in /root/openvpn. Change this to fit
your environment.

HOoHF H o OH H R R R

service openvpn_1

{

type = UNLISTED

port = 5000

socket_type = dgram

protocol = udp

wait = yes

user = root

server = /root/openvpn/openvpn

server_args = --inetd --dev tun --ifconfig 10.4.0.2 10.4.0.1 --secret /root/oper
}

sample-config-files/xinetd-client-config

# This OpenVPN config file
# is the client side counterpart
# of xinetd-server-config

dev tun

ifconfig 10.4.0.1 10.4.0.2
remote my-server

port 5000

user nobody

secret /root/openvpn/key
inactive 600

Copyright (C) 2002-2003 by James Yonan <jim@yonan.net>

“LyXfied” by C. R. Zamana (zamanaQciblis.net)

29



